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WHY DO WE STILL NEED 

SIMPLIFIED MODELS?
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� Necessary companion for all more complex simulations, as an error 

detection tool

� Allow to investigate the physics of the problem – instead of only relying 

on a “black box” that necessary mixes several aspects

� Well suited to small or medium-size dams for which data often lack to set-

up complex models

� Allow investigating the influence of the various parameters

These reasons explain why we keep doing simplified modeling for the 

static resistance of gravity dams (whereas they do not entirely capture 

some important issues like upstream crack propagation)
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A SIMPLIFIED MODEL WHICH 

WORKS WELL: ASSESSMENT OF THE 

SEISMIC SLIDING
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� If it is impossible to meet the non-sliding criterion during the earthquake

• The dam may slide over its foundation

• Along what distance it is likely to slide? mm? cm? m?

� Which method could be used to assess this distance?

• Finite elements model

• Newmark’s methods

• Any other?

= ?

THE SLIDING PROBLEM
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� A geometry

• 2D section

� Some hypothesis

• The behavior of the reservoir can be approximated by added-masses

• The shear force at the foundation only depends on the 1st mode

• The other modes can be considered as rigid modes

• The earthquake acceleration is horizontal

= ?

A SIMPLIFIED MODEL FOR SLIDING
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A SIMPLIFIED MODEL FOR SLIDING
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� With only two degrees of freedom

• A : the first mode, oscillating

• B : the other modes, rigid

� With only four parameters

• α : fraction of modal mass of the first mode (α = m1/M with M : total mass)

• ω : pulsation frequency of the first mode

• ξ : damping ratio of the first mode

• A contact law ?

k = αM ω²

C = 2 ξ αM ω
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1st mode

rigid modes
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A SIMPLIFIED MODEL FOR SLIDING
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� The limit-acceleration : defined by Newmark (1965)

• alim = Tdyna / M
• alim is the max. « static » acceleration for which the dam does not slide

• For a dam with vertical upstream face :

Mohr-Coulomb : Tdyna < Tmax – Tstat = N tan(φ) – Tstat
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A SIMPLIFIED MODEL FOR SLIDING
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� Only four parameters

• α : fraction of modal mass of the first mode (M : total mass)

• ω : pulsation frequency of the first mode

• ξ : damping ratio of the first mode

• alim : limit acceleration

� A model which is able to estimate the shear force at the foundation

k = αM ω²

C = 2 ξ αM ω
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A « PROOF » : THE SHEAR FORCE
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� Let’s compare the shear force at the foundation, in each model

• In a finite elements model
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Detailed demonstration is given in ref [1]

T = ?

[1] : Mével, S., (2013). Estimation du glissement sismique d’un barrage-poids. Rapport de projet de 
fin d’études, École Nationale des Ponts et Chaussées, ISL Ingénierie



A « PROOF » : THE SHEAR FORCE
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� Let’s compare the shear force at the foundation, in each model

• In a finite elements model








 +∆= ∑
=

N

i
iii tqaDtqaDK

2
111 )()(

( ) )(2)()( 111111
2

11 tqmtqmtamM S &ωξω ++−=

( )UCUKT &+∆= .

...=








 +∆+ ∑
=

N

i

iii tqaDtqaDC
2

111 )()( &&

T = ?

T = ?

• Same equation for the simplified model !
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SHEAR FORCE CALCULATION

� With an example

• Shear force calculated with ANSYS ®

• Shear force calculated with the simplified method

13

� ANSYS model hypothesis

• Rayleigh damping propotional to the stiffness matrix

• Pore-pressures taken into account in the alim value

• No fluid domain (only added masses) & infinitely rigid foundation
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SHEAR FORCE CALCULATION

� With an example

• Shear force calculated with ANSYS ®

• Shear force calculated with the simplified method
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� ANSYS model hypothesis

• Rayleigh damping propotional to the stiffness matrix

• Pore-pressures taken into account in the alim value

• No fluid domain (only added masses) & infinitely rigid foundation

SLIDING !
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SLIDING CALCULATION

� The motion integration gives the final irreversible sliding

• One or two degrees of freedom

• Fundamental principle of the dynamics

• The result does not depend on the total mass M !

� An example of sliding calculation

16

0,137 m
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SLIDING CALCULATION
� Let’s define the sliding spectra

• A sliding spectrum is drawn for a set of parameters :
� α

� ξ

� alim

• The sliding spectra give the final displacement of the mass B as a function
of the fundamental frequency f

� Shape of a sliding spectrum

17
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SLIDING SPECTRA COMPARISON

� With two examples

• Sliding calculated with Code_Aster ® (JOINT_MECA_FROT)

• Sliding calculated with the simplified method

18

� Code_Aster model hypothesis

• Rayleigh damping propotional to the stiffness matrix

• Pore-pressures taken into account in the alim value

• No fluid domain (only added masses) & infinitely rigid foundation
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SLIDING SPECTRA PROS AND CONS

� Sliding spectra :

• Are easy to define and to understand

• Are easy to compute and to use

• Are computed in less than 10 seconds with a personal computer !

19

� But some phenomena are not taken into account, especially :

• Soil-structure interaction

• Fluid-structure interaction

• Cohesion
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SLIDING SPECTRA APPLICATIONS
� The main advantage of this simplified method is the number of possible 

applications : parametric & probabilistic studies

� Amount of computation for a probabilistic study

• For each random parameter defined by its probability distribution

~ 102 simulations

• Let’s suppose that 2 parameters are defined as random

~ 104 simulations

• That-is-to say : 10 000 simulations for :

� each geometry

� each foundation resistance hypothesis

� each accelerogram

� Some examples are given in ref [2]

20

[2] : Mével, S., Jellouli, M. (2016). Sûreté d’un barrage-poids vis-à-vis de l’aléa sismique : 
évaluation probabiliste du glissement par une méthode simplifiée



IMPROVING SIMPLIFIED MODELS

WHEN AN ANALYTICAL SOLUTION OF A PHENOMENON EXISTS,

EVEN AN APPROXIMATED ONE,

A SIMPLIFIED MODEL CAN BE BUILT

� SOIL-STRUCTURE INTERACTION

• The Wolf & Deeks Cone (2010)

� VERTICAL FLUID BEHAVIOR

• Vertical modes

• Mean pressure on the dam

� FLUID-STRUCTURE INTERACTION
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AN EXAMPLE OF REAL RECORDS

� TAGOKURA DAM

• Concrete gravity dam

• Height: 145 m

• Crest length: 462 m

� RECORDS (3 directions)

• El 399 (lower gallery)

• El 444

• El 486

• El 515 (crest)
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SOIL-STRUCTURE INTERACTION

� The Wolf & Deeks Cone (2004)

• The soil impedance is approximated with

� springs

� dampers

� masses

� etc.

• The soil is replaced by a cone-shaped beam of soil

• Analytical solutions exist for

� the vertical impedance

� the horizontal impedance

� the rocking impedance

� the rotation impedance

• Quite accurate representation of the ISS, a lot of comparisons are made
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SOIL-STRUCTURE INTERACTION

24

z

� Rocking impedance

z0

2α

� Hypothesis

• The foundation is rigid

• The cone behaves as a Bernoulli beam

• The foundation is only rocking

� Fundamental equations

• Equilibrium (FPD)

• Material behavior

• Geometry
n = 3 for 2D models

n = 4 for 3D models
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SOIL-STRUCTURE INTERACTION
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� Soil behavior equation

� Solution for 2D models : n = 3

� Solution for 3D models : n = 4

?

Relation between θ and ∂²θ/∂z²

Analytical expression of impedance
Calibration on the static solution to 

determines the equivalent soil system
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SOIL-STRUCTURE INTERACTION
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z

� Rocking impedance

z0

2α

� Equivalent soil system

J

KC

C, J, K are defined analytically, 

and does not depend on ϖ
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SOIL-STRUCTURE INTERACTION
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� How to simply represent the dam?

J

KC

This simple model is no longer valid:

it should model the total momentum at the 

foundation, not the shear force
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SOIL-STRUCTURE INTERACTION

28

m1, j1

Ψ

θ

φ

� Parameters

• M : total mass

• m1 : first modal mass

• J : total moment of inertia

• j1 : first modal moment of inertia

• k, C : first mode of the dam on a 

rigid foundation
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� How to simply represent the dam?



SOIL-STRUCTURE INTERACTION
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M – m1, J – j1

m1, j1

Ψ

θ

φ

� Elevation z1 and z0

• z1 = (j1 / m1)0,5

• zG = elevation of the centre of gravity

� The « demonstration » is similar to the 

one presented for the first model

� Crest horiz. displacement

z1

zG

k,C
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SOIL-STRUCTURE INTERACTION
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� What is the effect of the SSI?

� Transfer function between the horiz. acceleration and the crest acc.

M – m1, J – j1

m1, j1

Ψ

θ

φ

z1

zG

� Matrices of the simplified system

• M, C, K

� Motion equation

� Crest horiz. displacement
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SOIL-STRUCTURE INTERACTION
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� What is the effect of the SSI?

� Transfer function between the horiz. acceleration and the crest acc.

with SSI

without SSI
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SOIL-STRUCTURE INTERACTION
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� What is the effect of the SSI?

� Transfer function between the horiz. acceleration and the crest acc.

with SSI

without SSI
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In this case (Tagokura):

� Almost no SSI damping

� Almost no effect on the 

fundamental frequency
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SOIL-STRUCTURE INTERACTION
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� What is the effect of the SSI?

� In the Tagokura case : almost no effect of the rocking impedance

� The horizontal impedance may have more effect : to be continued
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VERTICAL FLUID BEHAVIOR

� The vertical earthquake effect on a reservoir has been investigated by ref [4] 

� Vertical acceleration generates a vertical response of the reservoir

� This response generates a pressure on the upstream face

34
[4] : Pasbani, K., Ghorbani, A. (2012). Hydrodynamic analysis of reservoir due to vertical 
component of earthquake using an analytical method



VERTICAL FLUID BEHAVIOR

35

� Bottom condition

� Total absorption = Sommerfeld

� Total reflection = Rigid condition

� Realistic behavior

x

y
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VERTICAL FLUID BEHAVIOR
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VERTICAL FLUID BEHAVIOR
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� Mean pressure v.s. vertical acceleration : transfer function

• Influence of the parameter h
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VERTICAL FLUID BEHAVIOR
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� Rough estimation of the mean pressure on the upstream face

• Assuming that the vertical acceleration is a stochastic function, the value 

of the mean pressure on the upstream face can be estimated using the 

Power Spectral Density
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≈ 3

With a vertical PGA = 0,08 g



FLUID-STRUCTURE INTERACTION
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� First approximation : Westergaard

� Valid under strict conditions

� For high dams

� General analytical solutions have been proposed, see ref [5] and [6]

� So, simplified models could be built

� To be continued…

[5] : Pasbani, K. (2011). An analytical solution for earthquake-induced hydrodynamic pressure on gravity dams
[6] : Vieira Ribeiro, P., M., Da Silva, S., F., Pedroso, L., J. (2009). Analytical and numerical studies of dams
reservoir interaction in concrete gravity dams



CONCLUSIONS AND PERSPECTIVES
� We believe that simplified models can usefully be further 

developed

� Historical simplified dynamic models have been developed by 
others, for gravity or earthfill dams, and have proven being 
useful

� Some applications (parametric & probabilistic studies) need 
simplified models

� For gravity dams, a first 2D simplified model incorporating 

various aspects of dam dynamics has been developed and 
compared to more complex FEM models

� Several aspects still have to be incorporated (SSI, FSI, under-

pressures). It has not been implemented so far, but it seems 
possible

� The PN represents a unique opportunity to keep working on 

these methods 
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