Comité français des barrages et réservoirs

Session : 4

THE REPRODUCTION ANALYSIS OF ARATOZAWA DAM DURING 2008 EARTHQUAKE

International Symposium Qualification of dynamic analyses of dams and their equipments and of probabilistic assessment seismic hazard in Europe 31th August – 2nd September 2016 – Saint-Malo

> Nario YASUDA Japan Dam Engineering Center

1. Main Features of Aratozawa dam

Homepage of Miyagi Prefectural Government

Dam type	Rockfill dam with central clay core (1998)		
Dam height	74.4 m		
Crest length	413.7 m		
Crest width	10.0 m		
Slope gradients	Upstream: 1:2.7 , Downstream: 1:2.1		
Design seismic coefficient	0.15 (dam body), 0.18 (intake tower, bridge) 0.16 (spillway)		

2. Location of Aratozawa dam

3. Gigantic landslide by the Earthquake

after Takashi IGUCHI

20cm of settlement at dam crest

after Kyodo Press

4. Repair work of landslide

2011/Apr./6

5. Earthquake monitoring (1/2)

Locations of Seismographs

Earthquake Records in Stream Dir. Iwate-Miyagi Nairiku Earthquake, 2008

5. Earthquake monitoring (2/2)

Max. Acc. at foundation (Stream dir., cm/sec²)

Acceleration amplification ratio of dam body (Crest/Foundation)

6. Investigation with numerical analysis

(1) Why such peculiar phenomenon occurred ?(2) What caused the permanent deformation ?

Method for Earthquake Behavior Simulation 3-D FEM model Equivalent Linear Analysis

Method for Permanent Deformation Reproduction

- a) Stability analysis based on circular slip surface
- b) Deformation calculation based on the theory of cumulative damage

6-2 Identification of initial shear moduli G

Case of Miho dam

12

Case of Miho dam

	Name of earthquake	Date	Magnitude	lst natural frequency	Shear strain	Reduction of shear modulus
1	Izu Peninsula Off	29 June 1980	6.7	1.95	6.37×10^{-5}	0.91
2	East Yamanashi	14 April 1981	4.5	1.86	5.40×10^{-5}	0.82
3	West Kanagawa	8 Aug. 1983	6.0	1.81	1.63×10^{-4}	0.78
4	Chiba West Off	17 Dec. 1987	6.7	2.00	4.00×10^{-5}	0.95
5	Hakone	5 Aug. 1990	5.1	1.86	5.35×10^{-5}	0.82
6	Tokyo Bay	2 Feb. 1992	5.7	2.05	2.22×10^{-5}	1.00

Case of Miho dam

Case of Shichigasyuku dam

6-3 Reproduction of Earthquake Motion at the Bottom of the Analytical Model

Earthquake motion at the bottom of model

	$\mathbf{\tau}_{xx}$	T _{yx}	\boldsymbol{T}_{zx}	$\left[\boldsymbol{F}_{BX} \right]$
- F _{AY} - =			T _{zy}	F _{BY}
F _{AZ}	xz	YZ	zz	

6-4 Boundary condition (1/2)

First, input the earthquake wave (W) to the bottom of free field, to get the velocity response (Vf) and the displacement response (Uf) of the free field.

6-4 Boundary condition (2/2)

Then, input the earthquake wave (W) to the bottom of foundation, and at the same time, input the responses of the free field (Vf, Uf) to the lateral boundary of the foundation, to get the responses of the whole

6-5 Identification of reference strain and damping ratio (1/2)

6-5 Identification of reference strain and damping ratio (2/2)

Category	Max. damping	Reference shear strain	
① Core (lower parts)	20%	2 0. 10-4	
2 Core (upper part)	30%	3.0×10-	
③ Filter④ Transition	30%	4 0.40-4	
5 Rock (inner)6 Rock (outer)	23%	4.UX1U	

Identification of material properties

6-6 Damping and it's nonlinearity

Rayleigh type

Based on the frequency independency of internal damping of soil materials

7-1 Acceleration response (1/3)

Stream Direction

7-1 Acceleration response (2/3)

Cross Stream Direction

7-1 Acceleration response (3/3)

7-2 Spectra & transfer functions (1/6)

7-2 Spectra & transfer functions (2/6)

7-2 Spectra & transfer functions (3/6)

Vertical Direction

7-3 Spectra & transfer functions (4/6)

7-3 Spectra & transfer functions (5/6)

7-3 Spectra & transfer functions (6/6)

7-4 Comparison of relative displacement in stream direction

7-5 Distribution of the max. acceleration

The max. acceleration response of each nodal point in stream dir. occurred at different time.

7-6 Distribution of the max. shear strain

Shear strain	~10-4	10 ⁻⁴ ~10 ⁻²	10 -2~
Phenomenon	Wave motion, vibration	Crack, settlement	Sliding, compaction, liquefaction
Mechanical characteristics	Elastic	Plastic	Fracture

The max. shear strain of each element occurred at different time.

8. Mechanism of permanent deformation

8-1 Stability analysis based on circular slip surface

Sliding dir.	Arc No.	Safety Factor	Sliding Disp.(cm)
	1	0.839	0.0006
Upstream side	2	2.027	—
	3	2.395	—
	4	2.581	—
Downstream side	5	2.090	—
	6	2.135	_

8-2 Deformation calculation based on the theory of cumulative damage

Deformation after the earthquake

 $\boldsymbol{U}_r = \boldsymbol{U}_a - \boldsymbol{U}_b$

8-3 Distribution of the max. shear strain

Comparison of measured and calculated subsidence strain (Measurement period: Dec. 4, 2007 to June 17, 2008)

9. CONCLUSIONS

Mechanism of the peculiar seismic behavior

Large shear strain occurred near the rock contact surface, which reduced the stiffness and increased the damping of the embankment.

The material near the crest and the slope surface became loosely during the earthquake, hence, the high frequency components lost.

Mechanism of permanent deformation

Permanent deformation was mainly due to the shaking subsidence of the soil materials. Sliding phenomenon did not occur during the earthquake.

THANK YOU FOR YOUR ATTENTION